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a b s t r a c t

In this paper, central discontinuous Galerkin methods are developed for solving ideal mag-
netohydrodynamic (MHD) equations. The methods are based on the original central dis-
continuous Galerkin methods designed for hyperbolic conservation laws on overlapping
meshes, and use different discretization for magnetic induction equations. The resulting
schemes carry many features of standard central discontinuous Galerkin methods such
as high order accuracy and being free of exact or approximate Riemann solvers. And more
importantly, the numerical magnetic field is exactly divergence-free. Such property,
desired in reliable simulations of MHD equations, is achieved by first approximating the
normal component of the magnetic field through discretizing induction equations on the
mesh skeleton, namely, the element interfaces. And then it is followed by an element-
by-element divergence-free reconstruction with the matching accuracy. Numerical exam-
ples are presented to demonstrate the high order accuracy and the robustness of the
schemes.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Many interesting problems in astrophysics, space physics and engineering can be described by magnetohydrodynamic
(MHD) equations, and therefore it is of great importance to design accurate and robust numerical methods for such equa-
tions. In this paper, we focus on the reliable high order numerical methods for ideal MHD equations when relativistic, vis-
cous, and resistive effects can be neglected, and these equations consist of a set of nonlinear hyperbolic conservation laws.

Besides the standard difficulty in solving nonlinear hyperbolic equations [20], one complexity in simulating the MHD
system is associated with the interrelation of the performance of schemes and the numerical divergence of the magnetic
field. Though the divergence of the exact magnetic field is always zero when it is zero initially, numerical evidence and some
analysis indicate that the nonzero divergence of the computed magnetic field can be responsible for numerical instability or
nonphysical features in approximated solutions [18,7,5,31,21,6]. This has been driving the development of various
divergence-cleaning or divergence-free numerical algorithms for MHD equations, see e.g. [7,16,5,31,15,21,17,23,4] and the
references therein. This also motivates the present work.

In this paper, central discontinuous Galerkin (DG) methods are developed for two-dimensional ideal MHD equations.
There is no essential difficulty to extend the methods to three dimensions, but we will not consider it in this paper. Our
methods are based on the central DG methods of Liu et al. [26,27] designed for hyperbolic conservation laws on overlapping
meshes, with different discretization for magnetic induction equations. More specifically, while other conservative quanti-
ties are evolved with the central DG methods of [26], the magnetic field (or its two components in two dimensions) is
. All rights reserved.
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updated in such a way that its normal component is first approximated by discretizing magnetic induction equations on the
mesh skeleton, namely, the element interfaces, and then an element-by-element divergence-free reconstruction procedure
with matching accuracy will follow. This will lead to an exactly divergence-free magnetic field approximation provided that
the electric field flux, used to discretize induction equations, is single-valued at grid-points. Fortunately this property is pro-
vided naturally by the present framework. The resulting methods (i) are high order accurate and (ii) free of exact or approx-
imate Riemann solvers which can be complicated for the MHD system (e.g. [28,13,22]); (iii) provide magnetic field
approximations with the exact zero divergence, instead of zero divergence in some discretized form or up to certain order
of accuracy; (iv) need no reconstruction from the cell average of solutions over certain stencil to achieve high order accuracy
due to their finite element nature; (v) need no averaging or interpolation step to have the single-valued electric field flux at
grid-points. One factor which contributes to some of the above features is the extra information provided by the two copies
of numerical solutions of the proposed methods defined on overlapping meshes.

Our work is related to the constraint transport methodology (see, e.g. [16,5,17,23]) which uses the magnetic flux as a
fundamental variable and works with the induction equation system in its integral form. It is also a continuation of the
earlier exploration by one of the authors to handle the divergence-free condition in the context of the DG framework in
[10,21], where locally divergence-free DG methods were introduced for Maxwell equations and ideal MHD equations, with
the use of piecewise divergence-free polynomials as the discrete space for the magnetic field. The methods demonstrated
enhanced stability and accuracy in some examples for ideal MHD equations compared with standard DG methods. The pro-
posed methods in this paper will further show improved performance in some test cases while using the exactly diver-
gence-free magnetic field. Our current methods are formulated only for Cartesian meshes with the second and the third
order accuracy. In fact, the second and the third order divergence-free reconstructions in Section 3.2.2 were also used
in [2,23], respectively. The extension to unstructured meshes is not trivial. The methods with arbitrarily higher order accu-
racy however can be formulated and this will be investigated in a forthcoming project, with ideas different from those in
[4,24].

The remainder of the paper is organized as follows. In Section 2, we introduce the governing equations, as well as the
notations related to meshes and discrete spaces. Section 3 is devoted to the formulation of the numerical methods. It starts
with a brief review of the central DG method of Liu et al. [26]. Followed is the proposed method presented first with the
forward Euler time discretization and then with the high order time discretizations. Nonlinear limiters, initial and bound-
ary condition treatments are also discussed. In Section 4, numerical experiments are carried out to demonstrate the accu-
racy and reliability of the methods. There is also a brief discussion on the computational cost. Concluding remarks are
made in Section 5. And we summarize formulas for the second and the third order divergence-free reconstructions in
Appendix A.

2. Equations, meshes and discrete spaces

2.1. Governing equations

The ideal MHD equations consist of a system of nonlinear hyperbolic equations
@q
@t
þr � ðquÞ ¼ 0; ð1Þ

@ðquÞ
@t

þr � quu> þ pþ 1
2
jBj2

� �
I� BB>

� �
¼ 0; ð2Þ

@B
@t
�r� ðu� BÞ ¼ 0; ð3Þ

@E
@t
þr � E þ pþ 1

2
jBj2

� �
u� Bðu � BÞ

� �
¼ 0 ð4Þ
with the additional divergence-free constraint
r � B ¼ 0: ð5Þ
Here q is the density, p is the hydrodynamic pressure, u = (ux,uy,uz)> is the velocity field, and B = (Bx,By,Bz)> is the magnetic
field. The total energy E is given by E ¼ 1

2 qjuj2 þ 1
2 jBj

2 þ p
c�1 with c as the ratio of the specific heats. In addition, I is the identity

matrix andr ¼ ð @
@x ;

@
@y Þ
>. Eqs. (1), (2), and (4) come from the conservation of mass, momentum, and energy, respectively. And

(3) is the magnetic induction equation system, which can be also written as
@B
@t
þr� E ¼ 0; ð6Þ
with E = �u � B being the electric field. Note that if the divergence-free constraint (5) is satisfied initially, it will hold for any
future time based on induction equations. Neglecting this constraint in numerical simulations however may lead to non-
physical features of approximating solutions or numerical instability [7,31,21,6]. To facilitate our presentation, we rewrite
the two-dimensional MHD system (1)–(4) as follows:
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@U
@t
þr � FðU;BÞ ¼ 0; ð7Þ

@B
@t
þr� EzðU;BÞ ¼ 0; ð8Þ
where U ¼ ðq;qux;quy;quz;Bz; EÞ>; B ¼ ðBx;ByÞ>, and F = (F1,F2) with
F1ðU;BÞ ¼ qux;qu2
x þ pþ 1

2
jBj2 � B2

x ;quxuy � BxBy;quxuz � BxBz;uxBz � uzBx;ux E þ pþ 1
2
jBj2

� �
� Bxðu � BÞ

� �>
; ð9Þ

F2ðU;BÞ ¼ quy;quyux � ByBx;qu2
y þ pþ 1

2
jBj2 � B2

y ;quyuz � ByBz;uyBz � uzBy;uy E þ pþ 1
2
jBj2

� �
� Byðu � BÞ

� �>
: ð10Þ
In addition, EzðU;BÞ ¼ uyBx � uxBy, and it is the z-component of the electric field. And r� Ez ¼ @Ez
@y ;�

@Ez
@x

� �>
.

2.2. Overlapping meshes and discrete spaces

In this subsection, we introduce meshes, discrete spaces and the relevant notations. Since only Cartesian grids are con-
sidered in this paper, without loss of generality we assume the computational domain is X ¼ ð0; aÞ � ð0; bÞ � Rd, with
d = 2. Let {xi}i and {yj}j be partitions of (0,a) and (0,b), respectively, xiþ1

2
¼ 1

2 ðxi þ xiþ1Þ, and yjþ1
2
¼ 1

2 ðyj þ yjþ1Þ. Then T C
h ¼

fCi;j;8i; jg and T D
h ¼ fDi;j;8i; jg define two overlapping meshes for X, with Ci,j = (xi,xi+1) � (yj,yj+1) and Di;j ¼ xi�1

2
; xiþ1

2

� �
�

yj�1
2
; yjþ1

2

� �
. They are also called primal and dual meshes, respectively. Associated with each mesh, the following discrete

spaces are defined
UH

h ¼ U
H;k
h ¼ v 2 ½L2ðXÞ�8�d : vjK 2 ½P

kðKÞ�8�d
;8K 2 T H

h

n o
;

MH

h ¼M
H;k
h ¼ v 2 Hðdiv0

; XÞ : vjK 2 WkðKÞ;8K 2 T H

h

n o
;

where w denotes C and D, Pk(K) denotes the space of polynomials in K with the total degree at most k, and
WkðKÞ ¼ ½PkðKÞ�d � spanfr � ðxkþ1yÞ;r� ðxykþ1Þg;
Hðdiv0

; XÞ ¼ fv 2 Hðdiv; XÞ : r � v ¼ 0g;
Hðdiv; XÞ ¼ fv 2 ½L2ðXÞ�d : r � v 2 L2ðXÞg:
Note that the functions inMH;k
h are exactly divergence-free, that is, they are piecewise divergence-free and have continuous

normal components across element interfaces. Furthermore, based on [8], MH;k
h has optimal approximation properties for

H(div0;X) on Cartesian meshes with respect to the index k.

3. Numerical schemes

3.1. Review of central DG methods of Liu et al. [26]

To better present the exactly divergence-free central DG methods for the MHD system, we first review the central DG
method of Liu et al. [26] when it is applied to a one-dimensional scalar conservation equation
@uðx; tÞ
@t

þ @f ðuðx; tÞÞ
@x

¼ 0; x 2 ð0; aÞ: ð11Þ
The method can also be defined for multi-dimensional or system of hyperbolic conservation laws. Let {xi}i be a partition of
(0,a). With xiþ1

2
¼ 1

2 ðxi þ xiþ1Þ, Ii = (xi,xi+1) and Iiþ1
2
¼ xi�1

2
; xiþ1

2

� �
, we define two discrete spaces associated with overlapping

meshes {Ii}i and Iiþ1
2

n o
i
: VC

h ¼ V
C;k
h ¼ fv : v jIi

2 PkðIiÞ;8ig; VD
h ¼ V

D;k
h ¼ v : v jI

iþ1
2

2 Pk Iiþ1
2

� �
;8i

� 	
. Here Pk(I) denotes the space

of polynomials in I with the degree at most k. To solve (11), the central DG method uses both spaces VC
h and VD

h and its
semi-discrete formulation is given as follows: look for uC

hð�; tÞ 2 V
C;k
h and uD

h ð�; tÞ 2 V
D;k
h , such that for any

v 2 PkðIiÞ; w 2 Pk Iiþ1
2

� �
with any i,
Z

Ii

@uC
h

@t
v dx ¼ 1

smax

Z
Ii

uD
h � uC

h


 �
v dxþ

Z
Ii

f uD
h


 � @v
@x

dx� f uD
h ðxiþ1; tÞ


 �
vðxiþ1Þ þ f uD

h ðxi; tÞ

 �

vðxiÞ;

Z
I
iþ1

2

@uD
h

@t
wdx ¼ 1

smax

Z
I
iþ1

2

uC
h � uD

h


 �
wdxþ

Z
I
iþ1

2

f uC
h


 � @w
@x

dx� f uC
h xiþ1

2
; t

� �� �
w xiþ1

2

� �
þ f uC

h xi�1
2
; t

� �� �
w xi�1

2

� �
:
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Here smax is the maximal time step allowed by the CFL restriction. It is more suitable to write smax = smax(t), as smax is often
dynamically chosen in implementation. The fully discrete central DG method can be obtained if one further discretizes the
time variable t. For instance, with the forward Euler time discretization, one has: look for unþ1;C

h 2 VC;k
h and unþ1;D

h 2 VD;k
h , such

that for any v 2 PkðIiÞ; w 2 Pk Iiþ1
2

� �
with any i,
Z
Ii

unþ1;C
h v dx ¼

Z
Ii

hnun;D
h þ ð1� hnÞun;C

h

� �
v dxþ Dtn

Z
Ii

f un;D
h

� � @v
@x

dx� f un;D
h ðxiþ1; tÞ

� �
vðxiþ1Þ þ f un;D

h ðxi; tÞ
� �

vðxiÞ
 !

;

Z
I
iþ1

2

unþ1;D
h wdx ¼

Z
I
iþ1

2

hnun;C
h þ ð1� hnÞun;D

h

� �
wdx

þ Dtn

Z
I
iþ1

2

f un;C
h

� � @w
@x

dx� f un;C
h xiþ1

2
; t

� �� �
w xiþ1

2

� �
þ f un;C

h xi�1
2
; t

� �� �
w xi�1

2

� �0
@

1
A:
Here un;C
h 2 VC;k

h and un;D
h 2 VD;k

h approximate the solution of (11) at t = tn, and unþ1;C
h and unþ1;D

h approximate the solution at
tn+1 = tn + Dtn. In addition, hn = Dtn/sn 2 [0,1] with sn = smax(tn). High order time discretizations can be used for better accu-
racy in temporal direction. Stability should be considered when one chooses the time discretization to get a fully discrete
scheme (see e.g Table 6 in [27]). Note that with two copies of numerical solutions, the method does not need numerical
fluxes which are exact or approximate Riemann solvers and are used in standard DG methods [11]. This feature is shared
by central type schemes, e.g. [1,23].

3.2. Schemes with the forward Euler time discretization

In this section, we formulate the second and the third order central DG methods with the exactly divergence-free mag-
netic field to solve the system (7) and (8) and therefore (1)–(4). The methods evolve two copies of numerical solutions. Let us
assume they are available at t = tn, denoted as Un;H

h ;Bn;H
h


 �
2 UH;k

h �MH;k
h with Bn;H

h ¼ Bn;H
x;h ; B

n;H
y;h

� �>
. Here and below w denotes

C and D. We will describe how to obtain two sets of numerical solutions at tn+1 = tn + Dtn, denoted as ðUnþ1;H
h ;

Bnþ1;H
h Þ 2 UH;k

h �MH;k
h with Bnþ1;H

h ¼ Bnþ1;H
x;h ;Bnþ1;H

y;h

� �>
. Due to similarity, we only present the procedure to update

Unþ1;C
h ;Bnþ1;C

h

� �
. We start with the first order forward Euler time discretization, and higher order time discretizations will

be discussed afterward.

3.2.1. Updating Unþ1;C
h

To get Unþ1;C
h , we apply to (7) the central DG methods of Liu et al. [26] as the spatial discretization and the forward Euler

method as the time discretization. That is, to look for Unþ1;C
h 2 UC;k

h , such that for any V 2 [Pk(Ci,j)]8�d with any i, j,
Z
Ci;j

Unþ1;C
h � V dx ¼

Z
Ci;j

hnUn;D
h þ ð1� hnÞUn;C

h

� �
� V dx

þ Dtn

Z
Ci;j

F Un;D
h ;Bn;D

h

� �
� rV dx�

Z
@Ci;j

F Un;D
h ;Bn;D

h

� �
� n

� �
� V ds

 !
; ð12Þ
Here hn = Dtn/sn 2 [0,1], with sn being the maximal time step allowed by the CFL restriction [26] at tn. And n is the unit out-
ward normal along oCi,j.

3.2.2. Updating the exactly divergence-free Bnþ1;C
h

Note a piecewise divergence-free vector field is exactly (or called globally) divergence-free if and only if it has continuous
normal component across element interfaces. Therefore our next step to get the exactly divergence-free Bnþ1;C

h starts with
first approximating the normal component of the magnetic field n � B on the mesh skeleton, namely, the mesh interfaces,
then an element by element divergence-free reconstruction follows with the matching accuracy. This procedure is related
to the constraint transport methodology [16] which uses the magnetic flux as a fundamental variable and works with the
induction equation system in its integral form. For the Cartesian mesh we are considering, the normal component of B on
the mesh skeleton is determined by Bx along y-direction edges and By along x-direction edges.

We first discretize the two one-dimensional equations of the system (8)
@Bx

@t
¼ � @Ez

@y
; ð13Þ

@By

@t
¼ @Ez

@x
; ð14Þ
with respect to the primal mesh T C
h as follows: for any i, j, look for bC

x;iðyÞ 2 Pkððyj; yjþ1ÞÞ such that
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Z yjþ1

yj

bC
x;iðyÞlðyÞdy ¼

Z yjþ1

yj

hnBn;D
x;h ðxi; yÞ þ ð1� hnÞBn;C

x;h ðxi; yÞ
� �

lðyÞdy

þ Dtn

Z yjþ1

yj

En;D
z ðxi; yÞ

@lðyÞ
@y

dy� En;D
z;i;jþ1lðyjþ1Þ þ En;D

z;i;jlðyjÞ
 !

; ð15Þ
for any lðyÞ 2 PkðRÞ, and look for bC
y;jðxÞ 2 Pkððxi; xiþ1ÞÞ such that
Z xiþ1

xi

bC
y;jðxÞmðxÞdx ¼

Z xiþ1

xi

hnBn;D
y;h ðx; yjÞ þ ð1� hnÞBn;C

y;h ðx; yjÞ
� �

mðxÞdx

þ Dtn �
Z xiþ1

xi

En;D
z ðx; yjÞ

@mðxÞ
@x

dxþ En;D
z;iþ1;jmðxiþ1Þ � En;D

z;i;jmðxiÞ
 !

; ð16Þ
for any mðxÞ 2 PkðRÞ. Here En;D
z ðx; yÞ ¼ EzðUn;D

h ðx; yÞ;B
n;D
h ðx; yÞÞ and En;D

z;i;j ¼ En;D
z ðxi; yjÞ for any i and j. And hn is the same as before.

The scheme above can be regarded as central DG methods applied to one-dimensional problems (13) and (14) with the
meshes derived from the skeletons of T C

h and T D
h . Moreover, bC

x;i and bC
y;j provide approximations for Bx(xi,y) and By(x,yj) at tn+1,

and they satisfy the following compatibility condition:
Z yjþ1

yj

bC
x;iþ1 dy�

Z yjþ1

yj

bC
x;i dyþ

Z xiþ1

xi

bC
y;jþ1 dx�

Z xiþ1

xi

bC
y;j dx ¼ 0 ð17Þ
for any given i and j. Now we want to verify (17) which is a necessary condition for the divergence-free reconstruction in the
next step. Take l(y) � 1 in (15), with the index i being i + 1 and i, we have
Z yjþ1

yj

bC
x;iþ1ðyÞdy ¼

Z yjþ1

yj

hnBn;D
x;h ðxiþ1; yÞ þ ð1� hnÞBn;C

x;h ðxiþ1; yÞ
� �

dyþ Dtn �En;D
z;iþ1;jþ1 þ En;D

z;iþ1;j

� �
;

Z yjþ1

yj

bC
x;iðyÞdy ¼

Z yjþ1

yj

hnBn;D
x;h ðxi; yÞ þ ð1� hnÞBn;C

x;h ðxi; yÞ
� �

dyþ Dtn �En;D
z;i;jþ1 þ En;D

z;i;j

� �
:

Take m(x) � 1 in (16), with the index j being j + 1 and j, we have
Z xiþ1

xi

bC
y;jþ1ðxÞdx ¼

Z xiþ1

xi

hnBn;D
y;h ðx; yjþ1Þ þ ð1� hnÞBn;C

y;h ðx; yjþ1Þ
� �

dxþ Dtn En;D
z;iþ1;jþ1 � En;D

z;i;jþ1

� �
;

Z xiþ1

xi

bC
y;jðxÞdx ¼

Z xiþ1

xi

hnBn;D
y;h ðx; yjÞ þ ð1� hnÞBn;C

y;h ðx; yjÞ
� �

dxþ Dtn En;D
z;iþ1;j � En;D

z;i;j

� �
:

Then
 Z yjþ1

yj

bC
x;iþ1ðyÞdy�

Z yjþ1

yj

bC
x;iðyÞdyþ

Z xiþ1

xi

bC
y;jþ1ðxÞdx�

Z xiþ1

xi

bC
y;jðxÞdx ¼

Z
@Ci;j

hnn � Bn;D
h þ ð1� hnÞn � Bn;C

h

� �
ds

¼
Z

Ci;j

hnr � Bn;D
h þ ð1� hnÞr � Bn;C

h

� �
dx ¼ 0;
and this gives (17). The derivation has used the fact that both Bn;C
h and Bn;D

h at tn are exactly divergence-free. In addition, the
electric flux fEn;D

z;i;jgi;j, used to discretize the induction equations (15) and (16), are evaluated based on the numerical solution
on the dual mesh, they are naturally single-valued at the grid-points of the primal mesh, and therefore all relevant terms are
canceled out with each other. We want to comment that in Godunov type methods such as [5,4,17], additional interpolation
or averaging procedure is needed to produce a single-valued electric magnetic flux and therefore to result in (17), and certain
upwind mechanism needs to be incorporated for stability consideration especially for high order schemes.

The final step of the proposed methods is an element-by-element divergence-free reconstruction to define
Bnþ1;C

h ¼ Bnþ1;C
x;h ;Bnþ1;C

y;h

� �
. Given i, j, the reconstruction on Ci,j goes as: look for Bnþ1;C

h jCi;j
2 WkðCi;jÞ such that

	 Bnþ1;C
x;h ðxl; yÞ ¼ bC

x;lðyÞ for l = i, i + 1 and y 2 (yj,yj+1),

	 Bnþ1;C
y;h ðx; ylÞ ¼ bC

y;lðxÞ for l = j, j + 1 and x 2 (xi,xi+1),

	 r � Bnþ1;C
h

��
Ci;j
¼ 0.

For k = 1 and k = 2, the reconstruction defined above is uniquely determined provided that the compatibility condition
(17) holds. As the reconstruction was also used in [2] for k = 1 and [23] for k = 2, we will not repeat the derivation but include
the algebraic formulas in Appendix A. Now Bnþ1;C

h is piecewise divergence-free with respect to the primal mesh T C
h , and its

normal components along the mesh interfaces are continuous. Therefore Bnþ1;C
h is exactly divergence-free and Bnþ1;C

h 2 MC;k
h .
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Moreover, when k = 1 and k = 2, respectively, Bnþ1;C
h is the second and the third order approximation for the magnetic field

[8]. For k > 2, more information about B than its normal component on the mesh skeleton is needed to determine the recon-
struction, and this will be investigated in our forthcoming project.
3.3. Schemes with high order time discretizations

So far the algorithm is presented when the first order forward Euler method is taken as the time discretization. To in-
crease the accuracy in time, strong stability preserving (SSP) high order Runge–Kutta or multi-step [19] time discretizations
can be used. Such discretization is a convex combination of the forward Euler method, and therefore the full scheme with a
high order SSP time discretization will still produce an exactly divergence-free approximation for the magnetic field. For
multi-stage time discretizations such as SSP Runge–Kutta methods, one needs to apply the divergence-free reconstruction
for each inner stage. For the numerical experiments in Section 4, the third order total variation diminishing (TVD) Run-
ge–Kutta method [12] is applied.
3.4. Nonlinear limiter, initial and boundary conditions

Similar to other high order methods for nonlinear hyperbolic conservation laws, nonlinear limiters are needed for numer-
ical stability in some test examples. In our simulation, the total variation bounded (TVB) minmod slope limiter [30,12] is
taken. This simple limiter involves a positive parameter M. It is known that for smooth examples, one needs to choose a suit-
able M (for instance with a large enough M to turn off this limiter) or to adopt other limiting strategies [29,25] in order to
keep the designed accuracy. We here choose not to apply the limiter to smooth examples, and set M = 1 for the remaining
test cases. Different values of M or other limiters [29,25] may produce better results for each individual example, and this
will not be explored in this paper. The limiter can be implemented either componentwisely or in local characteristic fields,
and its performance with these implementations will be commented for each example. Finally, we want to mention that no
limiting procedure is applied to the magnetic field computed in Section 3.2.2.

The numerical solutions are initialized through the L2 projections of the initial condition onto UC;k
h �M

C;k
h and UD;k

h �M
D;k
h ,

respectively. And this makes the simulation start with the exactly divergence-free magnetic field approximation. For the
periodic boundary condition, the treatment is straightforward. For the outgoing boundary condition, ghost cells are used,
and the numerical solution is extrapolated such that the electric field flux used to discretize equations (13) and (14) is sin-
gle-valued at the grid-points, and the magnetic field is exactly divergence-free. These will lead to the compatibility condition
(17) which is necessary for the divergence-free reconstructions. For general boundary conditions, complexity arises due to
the use of overlapping meshes and the requirement for the magnetic field to be exactly divergence-free, and this will not be
investigated in this paper.
4. Numerical examples

In this section, numerical examples are presented to demonstrate the performance of the proposed methods. We start
with three smooth examples, namely, an essentially ‘‘scalar’’ example, the smooth Alfvén wave problem, and the smooth
vortex problem, to show the accuracy of the schemes. Then our methods are tested through the field loop advection, the Ors-
zag–Tang vortex example, and the rotor problem which all involve periodic boundary conditions. Finally we consider the
Brio–Wu shock-tube problem in unrotated and rotated two-dimensional frames, the blast problem and the cloud-shock
interaction example with outgoing boundary conditions. In the simulation, the primal mesh is taken as the uniform rectan-
gular mesh. We use Pk approximations to denote the solutions computed with the discrete spaces UC;k

h �M
C;k
h and

UD;k
h �M

D;k
h . The time step Dt is dynamically determined by
Dt ¼ Ccfl

max jux jþcx
f

� �
Dx þ

max juy jþcy
f

� �
Dy

0
@

1
A
;

where Ccfl defines the CFL number, cx
f and cy

f are the fast speed in x and y directions, respectively (see [28] for the definition),
and the maxima are computed over all cell elements. With the third order TVD Runge–Kutta time discretization [12], we take
Ccfl = 1.0 for k = 1 and Ccfl = 0.6 for k = 2 unless otherwise indicated. And hn = 1 is used with sn = Dtn. As suggested in [27], it is
observed that our methods allow larger CFL number Ccfl than standard DG methods with the same Runge–Kutta time discret-
ization. For instance, when solving the smooth examples in Section 4.1, DG methods in [21] with the third order Runge–Kut-
ta time discretization [12] allows Ccfl = 0.75 for k = 1 and Ccfl = 0.3 for k = 2. And they are unstable with Ccfl = 0.78 for k = 1 and
with Ccfl = 0.33 for k = 2 when applied to the first smooth example in Section 4.1.1. To save space, the data generated from
these numerical experiments will not be included in this paper. For the same reason, except the smooth examples, only P2

results on the primal mesh are reported below with the consideration that the numerical stability is relatively harder to
achieve for higher order methods, although all simulations are performed with both P1 and P2 approximations.
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4.1. Examples with smooth solutions

4.1.1. The smooth ‘‘scalar’’ example
The first smooth example is essentially a scalar problem, as there is only one nontrivial component q in the solution. The

simulation starts with the initial condition (q,ux,uy,uz,Bx,By,Bz,p) = (2 + sin(x + y),1,1,0,0,0,0,5) with c = 2 in the domain
[0,2p] � [0,2p]. Periodic boundary conditions are used, and no nonlinear limiter is applied. The exact solution is simply
q(x,y, t) = 2 + sin(x + y � (ux + uy)t) = 2 + sin(x + y � 2t) with other components remaining invariant. The L2 errors and orders
of accuracy are presented in Table 1 for the density q at t = 7. The results show that the proposed methods are (k + 1)st order
accurate for Pk approximations with k = 1, 2, and therefore they are optimal with respect to the approximation properties of
discrete spaces. Note that this example only involves the hydrodynamical part of the MHD system, and it cannot fully dem-
onstrate the performance of our methods.

4.1.2. The smooth Alfvén wave
The next smooth example describes a circularly polarized Alfvén wave ([31,23]) moving in the domain [0,1/cosa] �

[0,1/sina]. Here, a represents the angle with respect to the x-axis at which the wave propagates. We use the same initial
conditions as [23], that is
Table 1
L2 error

Mes

32 �
64 �
128
256
512

Table 2
L2 error

Mes

16 �
32 �
64 �
128
256
q ¼ 1; uk ¼ 0; u? ¼ 0:1 sinð2pbÞ; uz ¼ 0:1 cosð2pbÞ;
Bk ¼ 1; B? ¼ u?; Bz ¼ uz; p ¼ 0:1;
where b = xcosa + ysina and a = p/4. The subscript k and \ denote the directions parallel and perpendicular to the wave
propagation direction, respectively. The boundary conditions are periodic. The Alfvén wave travels towards the origin
(0,0) with a constant Alfvén speed Bk=

ffiffiffiffiqp ¼ 1 and it returns to its initial configuration whenever t becomes an integer. In
the simulation, c = 5/3 is taken and no nonlinear limiter is applied. In Table 2, we report the arithmetic means of the L2 errors
for u\, uz, B\ and Bz, and the corresponding orders of accuracy at t = 5. The results show that the proposed methods are
(k + 1)st order accurate for Pk approximations with k = 1,2, and therefore they are optimal. The same conclusion can be
drawn based on the convergence order of each physical component.

4.1.3. The smooth vortex problem
The third smooth example is introduced in [3], and the exact solution describes a smooth vortex propagating stably with

the speed (1,1). The simulation is initialized with a background flow (q,ux,uy,uz,Bx,By,Bz,p) = (1,1,1,0,0,0,0,1) containing a
vortex, which is inducted through the fluctuation in the magnetic and velocity fields given as
ðdux; duyÞ ¼
n

2p
r� expf0:5ð1� r2Þg; ðdBx; dByÞ ¼

g
2p
r� expf0:5ð1� r2Þg;
and the perturbation in pressure given as
dp ¼ g2ð1� r2Þ � n2

8p2 expð1� r2Þ:
Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In the simulation, we set n = 1, g = 1, c = 5/3, and use [�5,5] � [�5,5] as the computational domain with

the periodic boundary conditions. Such boundary conditions will introduce an error with the magnitude O(e�12) = O(10�6)
s and orders of accuracy of q for the smooth scalar problem computed within [0,2p] � [0,2p] at t = 7.

h P1 P2

L2 error Order L2 error Order

32 2.73E�02 6.17E�04
64 5.01E�03 2.45 7.65E�05 3.01
� 128 1.11E�03 2.18 9.55E�06 3.00
� 256 2.67E�04 2.05 1.19E�06 3.00
� 512 6.61E�05 2.02 1.49E�07 3.00

s and orders of accuracy for the smooth Alfvén wave problem at t = 5.

h P1 P2

L2 error Order L2 error Order

16 6.07E�03 – 1.48E�03 –
32 8.43E�04 2.85 1.82E�04 3.02
64 1.32E�04 2.68 2.26E�05 3.01
� 128 2.59E�05 2.35 2.83E�06 3.00
� 256 5.97E�06 2.11 3.54E�07 3.00



Table 3
L2 errors and orders of accuracy of q, ux, Bx and p for the smooth vortex example at t = 20. Ccfl = 1.0 for P1 approximations and Ccfl = 0.6 for P2 approximations.

Mesh q ux Bx p

L2 error Order L2 error Order L2 error Order L2 error Order

P1

32 � 32 1.35E�03 – 2.91E�02 – 2.82E�02 – 5.41E�03 –
64 � 64 3.21E�04 2.07 4.38E�03 2.74 4.16E�03 2.76 8.85E�04 2.61
128 � 128 6.12E�05 2.39 5.97E�04 2.87 5.52E�04 2.91 1.37E�04 2.70
256 � 256 1.30E�05 2.23 8.97E�05 2.74 7.73E�05 2.84 2.53E�05 2.44

P2

32 � 32 1.39E�03 – 3.75E�03 – 1.22E�02 – 2.06E�03 –
64 � 64 1.86E�04 2.90 4.98E�04 2.91 1.61E�03 2.93 2.80E�04 2.88
128 � 128 2.34E�05 2.99 6.27E�05 2.99 2.02E�04 2.99 3.53E�05 2.99
256 � 256 2.92E�06 3.00 7.94E�06 2.98 2.54E�05 2.99 4.41E�06 3.00

Table 4
L2 errors and orders of accuracy of q, ux, Bx and p for the smooth vortex example at t = 20. Ccfl = 0.4 for P1 approximations and Ccfl = 0.3 for P2 approximations.

Mesh q ux Bx p

L2 error Order L2 error Order L2 error Order L2 error Order

P1

32 � 32 1.81E�03 – 5.17E�02 – 5.12E�02 – 9.14E�03 –
64 � 64 5.17E�04 1.81 8.60E�03 2.59 8.48E�03 2.60 1.65E�03 2.47
128 � 128 8.43E�05 2.62 1.15E�03 2.91 1.12E�03 2.92 2.23E�04 2.89
256 � 256 1.17E�05 2.84 1.52E�04 2.92 1.45E�04 2.95 2.97E�05 2.91

P2

32 � 32 2.51E�03 – 6.68E�03 – 2.23E�02 – 3.76E�03 –
64 � 64 3.62E�04 2.79 9.64E�04 2.79 3.12E�03 2.84 5.49E�04 2.77
128 � 128 4.61E�05 2.97 1.23E�04 2.97 3.96E�04 2.98 7.01E�05 2.97
256 � 256 5.77E�06 3.00 1.55E�05 2.99 4.96E�05 3.00 8.78E�06 3.00
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which will not affect the reported results. In addition, no nonlinear limiter is applied. In Table 3, we present the L2 errors and
orders of accuracy for representative variables q, ux, Bx and p at t = 20. The results confirm the optimal accuracy orders of our
proposed methods.

For all three smooth examples we have tested, it is observed that using relatively smaller CFL numbers and therefore
smaller time steps does not always reduce the numerical errors. This is most pronounced in the smooth vortex example,
and can be illustrated with Table 4 when Ccfl = 0.4 for k = 1 and Ccfl = 0.3 for k = 2. Indeed, for this example, the errors of most
components are smaller on the tested meshes when larger time steps are used.
4.2. Examples with non-smooth solutions

4.2.1. The field loop advection
In this subsection, we consider the magnetic field loop advection problem originally proposed in [17]. The same initial

condition as in [23] is used. That is, (q,ux,uy,uz,Bz,p) = (1,2,1,1,0,1), and (Bx,By) =r� Az, where Az is the z-component of
the magnetic potential
Az ¼
A0ðR� rÞ if r 6 R;

0 if r > R

�

with A0 = 10�3, R = 0.3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The methods are implemented on the 200 � 100 mesh of the computational domain

[�1,1] � [�0.5,0.5]. We take c = 5/3 and the boundary conditions are periodic.
The gray-scale images of the magnetic pressure B2

x þ B2
y in the solution, which is convected across the domain periodically,

are shown in Fig. 1. They are based on the initial condition at t = 0 and the P2 approximation at t = 2. The field loop is well
preserved in the simulation. And similar as in [17,23], numerical dissipation is observed around the center and the boundary
of the loop. Unlike some schemes discussed in [17,23], our exactly divergence-free methods do not produce oscillatory solu-
tions. In Fig. 2, we further show the magnetic field lines. Due to the exactly divergence-free feature of our computed mag-
netic field, the magnetic field lines are plotted by contouring the z-component of the numerical magnetic potential Az. It is
observed that the symmetry is well preserved at t = 2 and even at later time t = 10. The slight distortion at t = 10 can be
expected due to the numerical dissipation in the long time simulation. All presented results are computed with the



Fig. 1. The magnetic pressure B2
x þ B2

y of the field loop advection. P2 approximation on the 200 � 100 mesh. Left: t = 0; right: t = 2.

Fig. 2. The magnetic field lines of the field loop advection. P2 approximations on the 200 � 100 mesh. Uniform range are used for all three plots. Top: t = 0;
bottom left: t = 2; bottom right: t = 10.
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componentwise limiter, and there is no visible difference in the results when the limiter is implemented in the local
characteristic fields. As a final remark, though ‘‘whether the z-component of the magnetic field Bz stays around machine
zero’’ was used in [23] to demonstrate the importance of the magnetic field being divergence-free in the simulation, our
methods produce the approximated Bz with the magnitude of 10�7 while using the exactly divergence-free magnetic field.
This can be explained by the O(10�6) deviation of the numerical uz from its exact value 1.

4.2.2. The Orszag–Tang vortex problem
In this subsection, we consider the Orszag–Tang vortex problem. This is a widely used test example and it involves for-

mation and interaction of multiple shocks as the nonlinear system evolves. The same initial condition as in [21] is taken, that
is,
q ¼ c2; ux ¼ � sin y; uy ¼ sin x; uz ¼ 0;
Bx ¼ � sin y; By ¼ sin 2x; Bz ¼ 0; p ¼ c
with c = 5/3. The computational domain is [0,2p] � [0,2p] with the periodic boundary conditions. In Fig. 3, we show the time
evolution of the density q at times t = 0.5, 2, 3, and 4, respectively. The simulation is based on P2 approximations on the
192 � 192 mesh. The solution is smooth initially, and it grows more complicated as the time progresses. Our results are
in good agreement with those in , e.g. [21,24].

As indicated in [21], different schemes, or even the same scheme with various solution spaces may behave quite differ-
ently for this example in terms of their ability to keep the simulation from breaking down. One explanation is that the
numerical divergence error can lead to numerical instability [21,24]. With the proposed methods, the computation with
P1 and P2 approximations stays stable till at least t = 30 (the maximum time we run, and the simulation can still continue).
And the time length for the P2 simulation to be stable is much longer than that of the locally divergence-free DG method in
[21]. This indicates that our exactly divergence-free central DG methods have better numerical stability compared with lo-
cally divergence-free DG methods in [21], where the divergence error is only partially removed by using special discrete
spaces. This also provides evidence that the divergence error has contribution to the numerical stability of the schemes.

We further perform a convergence study for the proposed methods using this example. In particular, the simulations are
carried out on 192 � 192 and 384 � 384 meshes till t = 2 when non-smooth features have already formed. In Fig. 4, we plot
the pressure p at x = 1.9635 based on P2 approximations. With the shock developed in the solution, the convergence can be
observed. For comparison, we also include the pressure cuts of the locally divergence-free DG method [21] in Fig. 4, and the
two sets of plots are nearly the same. The reported results are obtained when the componentwise limiter is used as it gen-
erates slightly smaller oscillation. Finally, we want to point out that no negative pressure is produced throughout the
simulation.
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Fig. 3. Development of the density q in Orszag–Tang vortex problem at t = 0.5 (top left), t = 2 (top right), t = 3 (bottom left), and t = 4 (bottom right). P2

approximation on the 192 � 192 mesh. Fifteen equally spaced contours with ranges [2.11,5.82], [0.62,6.41], [1.16,6.12], and [1.25,5.78], respectively.
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Fig. 4. The pressure p in Orszag–Tang vortex problem with x = 1.9635 at t = 2. P2 approximations on the 192 � 192 mesh (circle) and the 384 � 384 mesh
(solid line). Left: the proposed method; right: the locally divergence-free DG method in [21].
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4.2.3. The rotor problem
We next consider the rotor problem which was explained in details in [5]. The problem describes a dense disk of fluid

rapidly spinning in a light ambient fluid. A ‘‘taper’’ function is used to bridge these two areas to reduce the initial transition.
Following [31], the starting setup is given as



Fig. 5.
pressur
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ðuz;Bx;By;Bz; pÞ ¼ 0;5=
ffiffiffiffiffiffiffi
4p
p

;0; 0;0:5
� �

;

and
ðq;ux;uyÞ ¼
ð10;�ðy� 0:5Þ=r0; ðx� 0:5Þ=r0 if r < r0

ð1þ 9k;�kðy� 0:5Þ=r; kðx� 0:5Þ=rÞ if r0 < r < r1

ð1;0;0Þ if r > r1

8><
>:
with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
, r0 = 0.1, r1 = 0.115 and k = (r1 � r)/(r1 � r0). The simulation is implemented in the domain

[0,1] � [0,1], and periodic boundary conditions are used with c = 5/3. When the limiter is applied, we use the TVB minmod
limiter implemented in the local characteristic fields, which performs much better than the componentwise one.

In Fig. 5, we show the contour plots of P2 approximations at t = 0.295 on a 200 � 200 mesh. In particular, they are for den-
sity q, pressure p, the hydrodynamic Mach number juj/c (with c ¼

ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
being the sound speed), and the magnetic pressure

jBj2/2. Similar to [5,31,21], we further examine the performance of the methods by zooming in the central part of the Mach
number, see Fig. 6. Note that there is no ‘‘distortion’’ in the numerical solutions, and such distortion was reported in [31,21]
and was attributed to the divergence error in the magnetic field. It was reported in [31] that many one step TVD based
schemes failed for this problem due to the negative pressure, however in our simulation, there is no negative pressure
observed.

For this example, with the moderately reduced CFL number, our methods produce satisfactory approximations even when
the limiter is not applied. This observation is illustrated by P2 approximations with Ccfl = 0.3 in Fig. 7, which include the
zoom-in plots of the central part of the Mach number at t = 0.295 with and without using the limiter. When the mesh is re-
fined, the difference between these two groups of numerical solutions is diminishing, and this indicates good stability prop-
erty of the proposed methods. For the relatively coarser grids, the limiter improves the solutions by removing the oscillations
along the edge of the central ‘‘ellipse’’ of the Mach number. We further perform a convergence study for our method with
and without using the limiter. In Fig. 8, we plot the Mach number at x = 0.413 from the P2 approximations on 400 � 400 and
800 � 800 meshes, and they are nearly the same as those by the locally divergence-free DG method (see Fig. 19 of [21]). With
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several shocks developed in the solution, the convergence of the method is observed. There is overshoot around the strongest
shock when the limiter is not applied. This can be expected and the magnitude of the overshoot is reduced when the mesh is
refined. When the default CFL number, Ccfl = 0.6, is used in the simulation with the limiter, an almost identical plot to the
right one in Fig. 8 is obtained.

4.2.4. The Brio–Wu shock-tube problem
In this section, we consider the shock-tube problem which was originally used by Brio and Wu [9] to show the generation

of the compound waves in the MHD system. We employ the initial condition
ðq;ux0 ;uy0 ;uz;Bx0 ;By0 ; Bz;pÞ ¼
ð1:000; 0;0; 0;0:75;þ1;0;1:0Þ for x0 < 0;
ð0:125; 0;0; 0;0:75;�1;0;0:1Þ for x0 > 0;

�

where (x0,y0) is a rotated coordinate with a being the angle from the x-axis to the x0-axis. We solve this problem with a = 0
and a = p/32, which corresponds to a one-dimensional shock-tube problem in an unrotated and a rotated two-dimensional
frame, respectively. Outgoing boundary conditions are used with c = 2.

For a = 0, the simulation is implemented in the domain [�1,1] � [�0.01,0.01] with the 800 � 8 and 1600 � 16 meshes,
and q, Bx, By (same as Bx0 and By0 ) at t = 0.2 with y = 0 (same as y0 = 0) are shown on the left in Fig. 9. The solution of this Rie-
mann problem includes the left moving waves: the fast rarefaction wave, the intermediate shock attached by a slow rare-
faction wave; and the right moving waves: the contact discontinuity, a slow shock, and a fast rarefaction wave, and all of
them are resolved well. For a = p/32, the simulation is implemented in the domain [�1,1] � [�1,1] with a 600 � 600 mesh,
and q, Bx0 , By0 at t = 0.2 with y0 = 0 are shown on the right in Fig. 9. Note q and By0 in the rotated frame compare well with those
in the unrotated one. Oscillation is observed in Bx0 in the rotated frame, and it does not lead to additional oscillation in the
remaining components of the solution. Numerical experiment indicates that the oscillation in Bx0 is partially due to the ini-
tialization procedure, see Fig. 10, where Bx0 is computed based on the initial numerical solution of Bx and By. In the end, we
want to comment on the numerical boundary condition. For cases with small a, the error introduced through the non-phys-
ical outgoing boundary condition treatment does not have much effect to the solution in the interior of the computational
domain at t = 0.2. When a is larger, a more robust and accurate boundary condition is needed especially on the domain
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Fig. 7. Zoom-in central part for P2 approximations of Mach number in the rotor problem at t = 0.295. Thirty equally spaces contours with the unique range
[0.18,3.12]. From top to bottom: 200 � 200 mesh, 400 � 400 mesh, 800 � 800 mesh. Left: without limiter; right: with limiter.
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boundaries which intersect the y0-axis, and this is beyond the scope of this paper. In [31] (see Section 6.3.2), a shifted periodic
type boundary condition is used according to the translational symmetry of the problem when the value of a is related to the
meshsize. Unfortunately, such strategy cannot be applied to our simulation as it does not preserve the global divergence-free
property of the magnetic field.

4.2.5. The blast problem
The blast wave problem was first introduced in [5], and the solution involves strong magnetosonic shocks. We employ the

same initial condition as in [5,23], that is ðq;ux;uy;uz;Bx;By;BzÞ ¼ 1;0;0;0;100=
ffiffiffiffiffiffiffi
4p
p

;0;0
� �

, and the pressure is given as
p ¼
1000 if r 6 R;
0:1 if r > R;

�
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line). Left: without limiter; right: with limiter.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and R = 0.1. With this setup, the fluid in the region outside the initial pressure pulse has a very small

plasma b ¼ p
ðB2

xþB2
y Þ=2
¼ 2:513E� 04

� �
. The simulation is implemented in the domain [�0.5,0.5] � [�0.5,0.5] with the

200 � 200 mesh. Outgoing boundary conditions are used, and c = 1.4.
In Fig. 11, we present the numerical results at t = 0.01 based on P2 approximations, and they are for the density q, pressure

p, square of the total velocity u2
x þ u2

y , and the magnetic pressure B2
x þ B2

y . As pointed out in [5,23], this is a stringent problem
to solve. The negative pressure is generated near the shock front during our simulation, and this is also observed by
others, e.g. in [23]. One can see in Fig. 12 the images of the pressure p and its negative part min(0,p) with P2 approximations.
Note that the magnitude of the negative pressure is fairly small for this low plasma b example, and this illustrates the
good performance of the proposed methods. (One can recall how the pressure is computed based on other conservative
variables).

To further investigate the behavior of the proposed schemes for this example, we plot in Fig. 13 the density q, pressure p,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
at y = 0 computed on 200 � 200 and 400 � 400 meshes. One can see the scheme performs well in

convergence, and the negative pressure appears mainly around the shock front. For this example, all reported results are ob-
tained when the componentwise TVB minmod limiter is applied. And the simulations with limiters implemented in the local
characteristic fields suffer from the pressure being negative in terms of stability. It is expected that positivity preserving
techniques will further enhance the numerical stability, and this will be left to our future investigation.
4.2.6. The cloud-shock interaction
The last example we consider is the cloud-shock interaction problem [14] which involves strong MHD shocks interacting

with a dense cloud. We define three sets of data for (q,ux,uy,uz,Bx,By,Bz,p) as
U1 ¼ ð3:88968;0; 0;�0:05234;1;0;3:9353;14:2614Þ;
U2 ¼ ð1;�3:3156;0;0;1;0;1; 0:04Þ; U3 ¼ ð5;�3:3156;0;0;1;0;1;0:04Þ:
The computational domain [0,2] � [0,1] is divided into three regions: the post-shock region X1 = {(x,y):0 6

x 6 1.2,0 6 y 6 1}, the pre-shock region X2 ¼ ðx; yÞ : 1:2 < x 6 2;0 6 y 6 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1:4Þ2 þ ðy� 0:5Þ2

q
P 0:18

� 	
, and the cloud

region X3 ¼ ðx; yÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1:4Þ2 þ ðy� 0:5Þ2

q
< 0:18

� 	
. The solutions in X1, X2 and X3 are initialized as U1, U2, and U3, respec-

tively. Note that the cloud taking up the region X3 is five times denser than its surrounding. Outgoing boundary conditions
are used, and c = 5/3.

Fig. 14 shows the gray-scale images (with the darker area representing the larger value) on the mesh 600 � 300 for the P2

approximations of the density q, the magnetic field component Bx and By, and the pressure p at t = 0.6. With the main fea-
tures comparable to those in [14], our results also show some difference. For example, two middle tails of the cloud in [14]
seem to bend much further towards y = 0.5. To gain confidence in our results, we further perform a convergence study
through the P2 approximations on 600 � 300 and 800 � 400 meshes at t = 0.6. And the cuts of the density at y = 0.6 and
at x = 1.0 are plotted in Fig. 15. The convergence of our scheme is confirmed, and in particular, the thickness of the cloud
along the y direction at x = 1.0 is consistently captured on both meshes. The reported results are obtained by applying the
limiter in local characteristic fields.



Fig. 9. P2 approximations for the shock-tube problem in a rotated coordinate (x0 ,y0) with a being the angle from the x-axis to the x0-axis. From top to
bottom: q, Bx0 , By0 at t = 0.2 with y0 = 0. Left: 800 � 8 mesh (circle) and 1600 � 16 mesh (solid line) on [�1,1] � [�0.01, 0.01] with a = 0; right: 600 � 600
mesh on [�1,1] � [�1,1] with a = p/32.
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4.3. Remarks on the computational cost

In the end, we want to briefly comment on the computational cost of the proposed schemes. On one hand, the methods do
not use approximate or exact Riemann solvers, and they allow larger time steps compared with schemes such as standard DG
methods ([27]), these properties will contribute to the reduction of the computational cost. On the other hand, the use of two



Fig. 10. The P2 initialization of Bx0 for the shock-tube problem in a rotated coordinate (x0 ,y0) with a = p/32 being the angle from the x-axis and the x0-axis.

Fig. 11. P2 approximations for the blast problem on the 200 � 200 mesh at t = 0.01. Forty equally spaced contours are used. Top left: density
q 2 [0.206,4.751]; top right: pressure p 2 [�1.633,258.418]; bottom left: square of total velocity u2

x þ u2
y 2 ½0;286:125�; bottom right: magnetic pressure

B2
x þ B2

y 2 ½430:091;1183:430�.
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Fig. 12. P2 approximation of the pressure in the blast problem on the 200 � 200 mesh at t = 0.01. Left: pressure p; right: min(0,p).

Fig. 13. P2 approximations for the blast problem with y = 0 at t = 0.01. The density q (top left), pressure p (top right),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
(bottom left), and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
(bottom right) on the 200 � 200 mesh (circle) and the 400 � 400 mesh (solid line).
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copies of numerical solutions and the divergence-free reconstruction step will increase the computational complexity. As
some reference, we report the CPU time in Table 5 to run 100 time steps of the proposed methods. The simulation is per-
formed on a computer with the 2.53 GHz Intel Core 2 Duo processor and 4 GB DDR3 memory. One can observe that to
run one time step of the P2 simulation on the N � N mesh, the cost is comparable to that of the P1 simulation on the
2N � 2N mesh, and it is almost 4 times of the cost to run one time step of the P1 simulation on the N � N mesh.
5. Concluding remarks

In this paper, the second and the third order central DG methods are proposed for ideal MHD equations in two dimensions
when the Cartesian meshes are used. With the exactly divergence-free magnetic field, the methods demonstrate good sta-
bility with designed accuracy. In the ongoing and future projects, we will extend the methods to higher order accuracy, three



Fig. 14. Gray-scaled images for P2 approximations of the cloud-shock interaction problem on the 600 � 300 mesh at t = 0.6. Top left: q 2 [1.856,11.269];
top right: Bx 2 [�2.722,4.179]; bottom left: By 2 [�2.913,2.913]; bottom right: p 2 [6.541,14.675].
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Fig. 15. The P2 approximations of q in the cloud-shock interaction problem on the 600 � 300 mesh (circle) and the 800 � 400 (solid line) at t = 0.6. Left:
y = 0.6; right: x = 1.0.

Table 5
The CPU time (in seconds) to run 100 time steps of the proposed methods for the smooth Alfvén wave example.

Mesh 32 � 32 64 � 64 128 � 128 256 � 256

P1 3.015 13.535 60.099 255.599
P2 12.523 56.890 232.927 926.234
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dimensions, and hopefully also to general meshes. Moreover, positivity preserving techniques will be explored in central DG
framework to further improve the stability of the algorithms.
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Appendix A. Formulas for divergence-free reconstructions

In this section, we include the explicit formulas of divergence-free reconstructions used in Section 3.2.2. A reference ele-
ment C = (�1,1) � (�1,1) is considered for simplicity, and formulas for general elements can be obtained through change of
variables.
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Given b�x ðyÞ; b
þ
x ðyÞ; b

�
y ðxÞ; b

þ
y ðxÞ 2 PkðRÞ, satisfying the compatibility condition
Z 1

�1
bþx ðyÞdy�

Z 1

�1
b�x ðyÞdyþ

Z 1

�1
bþy ðxÞdx�

Z 1

�1
b�y ðxÞdx ¼ 0: ðA:1Þ
The divergence-free reconstruction is to look for B ¼ ðBx;ByÞ> 2 WkðCÞ, such that
Bxð
1; yÞ ¼ b
x ðyÞ; Byðx;
1Þ ¼ b
y ðxÞ; and r � B ¼ 0:
This reconstruction is uniquely determined for k = 1 and k = 2, and they are second and third order accurate, respectively. The
compatibility condition (A.1) is corresponding to (17).

When k = 1, given
b
x ðyÞ ¼ a
0 þ a
1 y; b
y ðxÞ ¼ b
0 þ b
1 x
with the compatibility condition (A.1) being aþ0 � a�0 þ bþ0 � b�0 ¼ 0, the reconstructed divergence-free magnetic field
B ¼ ðBx;ByÞ 2 W1ðCÞ is uniquely determined as
Bxðx; yÞ ¼ a0 þ a1xþ a2yþ a3x2 þ a4xy;

Byðx; yÞ ¼ b0 þ b1xþ b2yþ b3xyþ b4y2
with
a1 ¼
1
2

aþ0 � a�0

 �

; b1 ¼
1
2

bþ1 þ b�1

 �

;

a2 ¼
1
2

aþ1 þ a�1

 �

; b2 ¼
1
2

bþ0 � b�0

 �

;

a4 ¼ �2b4 ¼
1
2

aþ1 � a�1

 �

; b0 ¼
1
2

bþ0 þ b�0

 �

� b4;

b3 ¼ �2a3 ¼
1
2

bþ1 � b�1

 �

; a0 ¼
1
2

aþ0 þ a�0

 �

� a3:
When k = 2, given
b
x ðyÞ ¼ a
0 þ a
1 yþ a
2 y2; b
y ðxÞ ¼ b
0 þ b
1 xþ b
2 x2
with the compatibility condition (A.1) being
aþ0 � a�0 þ
1
3

aþ2 � a�2

 �

þ bþ0 � b�0 þ
1
3

bþ2 � b�2

 �

¼ 0;
the reconstructed divergence-free magnetic field B ¼ ðBx;ByÞ 2 W2ðCÞ is uniquely determined as
Bxðx; yÞ ¼ a0 þ a1xþ a2yþ a3x2 þ a4xyþ a5y2 þ a6x3 þ a7xy2;

Byðx; yÞ ¼ b0 þ b1xþ b2yþ b3x2 þ b4xyþ b5y2 þ b6x2yþ b7y3
with
b1 ¼
1
2

bþ1 þ b�1

 �

; a2 ¼
1
2

aþ1 þ a�1

 �

;

b4 ¼ �2a3 ¼
1
2

bþ1 � b�1

 �

; b3 ¼
1
2

bþ2 þ b�2

 �

;

a4 ¼ �2b5 ¼
1
2

aþ1 � a�1

 �

; a5 ¼
1
2

aþ2 þ a�2

 �

;

a7 ¼ �3b7 ¼
1
2

aþ2 � a�2

 �

; a0 ¼
1
2

aþ0 þ a�0

 �

� a3;

b6 ¼ �3a6 ¼
1
2

bþ2 � b�2

 �

; b0 ¼
1
2

bþ0 þ b�0

 �

� b5;

a1 ¼ �b2 ¼
1
2

aþ0 � a�0

 �

� a6:
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